Hello all , I am trying to solve this problem [ spoj.pl/problems/MTRIAREA ] but i am getting wrong answer .I am using the rotating caliper technique explained at http://en.wikipedia.org/wiki/Rotating_calipers . Could some one please tell me what is wrong with this approach . It would be also great if some one accepted can post some test case for this problem .
Thank You
[bbone=haskell,263]
import Data.List
import Data.Array
import Data.Maybe
import Data.Function
import Text.Printf
import qualified Data.ByteString.Char8 as BS
data Point a = P a a deriving ( Show , Ord , Eq )
data Vector a = V a a deriving ( Show , Ord , Eq )
data Turn = S | L | R deriving ( Show , Eq , Ord , Enum )
--start of convex hull
compPoint :: ( Num a , Ord a ) => Point a -> Point a -> Ordering
compPoint ( P x1 y1 ) ( P x2 y2 )
| compare x1 x2 == EQ = compare y1 y2
| otherwise = compare x1 x2
findMinx :: ( Num a , Ord a ) => [ Point a ] -> [ Point a ]
findMinx xs = sortBy ( \x y -> compPoint x y ) xs
compAngle ::(Num a , Ord a ) => Point a -> Point a -> Point a -> Ordering
compAngle ( P x1 y1 ) ( P x2 y2 ) ( P x0 y0 ) = compare ( ( y1 - y0 ) * ( x2 - x0 ) ) ( ( y2 - y0) * ( x1 - x0 ) )
sortByangle :: ( Num a , Ord a ) => [ Point a ] -> [ Point a ]
sortByangle (z:xs) = z : sortBy ( \x y -> compAngle x y z ) xs
findTurn :: ( Num a , Ord a , Eq a ) => Point a -> Point a -> Point a -> Turn
findTurn ( P x0 y0 ) ( P x1 y1 ) ( P x2 y2 )
| ( y1 - y0 ) * ( x2- x0 ) < ( y2 - y0 ) * ( x1 - x0 ) = L
| ( y1 - y0 ) * ( x2- x0 ) == ( y2 - y0 ) * ( x1 - x0 ) = S
| otherwise = R
findHull :: ( Num a , Ord a ) => [ Point a ] -> [ Point a ] -> [ Point a ]
findHull [x] ( z : ys ) = findHull [ z , x ] ys --incase of second point on line from x to z
findHull xs [] = xs
findHull ( y : x : xs ) ( z : ys )
| findTurn x y z == R = findHull ( x : xs ) ( z:ys )
| findTurn x y z == S = findHull ( x : xs ) ( z:ys )
| otherwise = findHull ( z : y : x : xs ) ys
convexHull :
Num a , Ord a ) => [ Point a ] -> [ Point a ]
convexHull xs = reverse . findHull [ y , x ] $ ys where
( x : y : ys ) = sortByangle . findMinx $ xs
--end of convex hull
--start of rotating caliper part http://en.wikipedia.org/wiki/Rotating_calipers
--dot product for getting angle
angVectors :: ( Num a , Ord a , Floating a ) => Vector a -> Vector a -> a
angVectors ( V ax ay ) ( V bx by ) = theta where
dot = ax * bx + ay * by
a = sqrt $ ax ^ 2 + ay ^ 2
b = sqrt $ bx ^ 2 + by ^ 2
theta = acos $ dot / a / b
--rotate the vector x y by angle t
rotVector :: ( Num a , Ord a , Floating a ) => Vector a -> a -> Vector a
rotVector ( V x y ) t = V ( x * cos t - y * sin t ) ( x * sin t + y * cos t )
--area of triangle
computeArea :: ( Num a , Ord a , Floating a ) => Point a -> Point a -> Point a -> a
computeArea ( P x1 y1 ) ( P x2 y2 ) ( P x3 y3 ) = 0.5 * abs ( ( x1 * y2 + x2 * y3 + x3 * y1 ) - ( y1 * x2 + y2 * x3 + y3 * x1 ) )
--rotating caliipers
rotCal :: ( Num a , Ord a , Floating a ) => Array Int ( Point a ) -> a -> Int -> Int -> Vector a -> Vector a -> a -> Int -> a
rotCal arr ang pa pb ca@( V ax ay ) cb@( V bx by ) area n
| ang > pi = area
| otherwise = rotCal arr ang' pa' pb' ca' cb' area' n where
P x1 y1 = arr ! pa
P x2 y2 = arr ! ( mod ( pa + 1 ) n )
P x3 y3 = arr ! pb
P x4 y4 = arr ! ( mod ( pb + 1 ) n )
t1 = angVectors ca ( V ( x2 - x1 ) ( y2 - y1 ) )
t2 = angVectors cb ( V ( x4 - x3 ) ( y4 - y3 ) )
ca' = rotVector ca $ min t1 t2
cb' = rotVector cb $ min t1 t2
ang' = ang + min t1 t2
( pa' , pb' , pre ) = if t1 < t2 then ( mod ( pa + 1 ) n , pb , pa ) else ( pa , mod ( pb + 1 ) n , pb )
area' = max area $ computeArea ( arr ! pre ) ( arr ! pa' ) ( arr ! pb' )
solve :: ( Num a , Ord a , Floating a ) => [ Point a ] -> a
solve [] = 0
solve [ p ] = 0
solve [ p1 , p2 ] = 0
solve arr = rotCal arr' 0 pa pb ( V 1 0 ) ( V (-1) 0 ) area $ n where
y1 = minimumBy ( on compare fN ) arr
y2 = maximumBy ( on compare fN ) arr
pa = fromJust . findIndex ( == y1 ) $ arr
pb = fromJust . findIndex ( == y2 ) $ arr
n = length arr
arr' = listArray ( 0 , n ) arr
area = computeArea ( arr' ! pa ) ( arr' ! ( mod ( pa + 1 ) n ) ) ( arr' ! pb ) --compute first area
fN ( P x y ) = y
--end of rotating caliper
--spoj code for testing but time limit exceed
final :: ( Num a , Ord a , Floating a ) => [ Point a ] -> a
final [] = 0
final [ p ] = 0
final [ p1 , p2 ] = 0
final arr = solve . convexHull $ arr
format :: ( Num a , Ord a , Floating a ) => [ Int ] -> [ [ Point a ]]
format [] = []
format (x:xs ) = t : format b where
( a , b ) = splitAt ( 2 * x ) xs
t = helpFormat a where
helpFormat [] = []
helpFormat ( x' : y' : xs' ) = ( P ( fromIntegral x' ) ( fromIntegral y' ) ) : helpFormat xs'
readD :: BS.ByteString -> Int
readD = fst . fromJust . BS.readInt
main = BS.interact $ BS.unlines . map ( BS.pack . ( printf "%.2f" :: Double -> String ) . final ) . format . concat . map ( map readD . BS.words ) . init . BS.lines
--end of spoj code
[/bbone]